

Mr. LEUNG Yiu Tong, Eric TWGHs Lui Yun Choy Memorial College

Level 1

- micro:bit Basics
 - micro:bit hardware interface (button, LED, sensor)
 - micro:bit Let's Code Platform and Resources
 - Ways to connect micro:bit to device (Bluetooth, USB)
 - Way to flash from device to micro:bit
 - Simple micro:bit Coding (3-4 activities)

Level 2

- Built-in micro:bit I/O
 - micro:bit Coding using micro:bit built-in sensor
 - Light Sensors
 - Accelerometer
 - Compass
 - Temperature sensor

Level 3

- Connect micro:bit to other devices through PINS (I)
 - Connect micro:bit to other sensors and servo motors
 - Radio Transmission (Easy communication between micro:bits)
 - Adding Package
 - Small scale project on real life scenarios

Structure of Micro:bit

Activity 1: Radio

- Using Nordic Gazell protocol
 - 255 group codes
 - Up to 8 devices
 - 2.4GHz frequency band

https://lancaster-university.github.io/microbit-docs/ubit/radio/

Activity 1: Radio

Work in pairs

Activity 1: Radio

 Modified Version (What is the difference?)

```
Host
on start
   📶 radio set group 🗎 255

→ on radio received receivedString ▼

         Ⅲ show icon
  then
         Ⅲ show icon
  else
```


Analog vs Digital Signal

 micro:bit uses different voltage level to represent different signal

Micro:bit Edge Connector

Activity 2: LED

LED = Light Emitting Diode

 It is an energy-saving light emitting device, which allow current only in single direction.

Activity 2: LED

on button A v pressed

digital write pin P0 🔻 to 🕻 🚺

 Make sure the code is consistent with the wiring connections

Activity 3: LDR

- LDR = Light Dependent Resistor
- Higher light intensity
 - → Lower resistance
- Cannot measure the resistance directly using micro:bit

Activity 3: LDR

https://upload.wikimedia.org/wikipedia/commons/d/d3/LDR-gs-2012.jpg https://cdn.techterms.com/img/lg/resistor_1312.jpg

Servo Motor

Servo motor is a motor which can turn in a specific angle

Servo Motor

May not work perfectly (Why?)

• By reading the time delay (in μs) of receiving the bounced pulse, we can calculate the distance

- It is given that the speed of sound wave in air = 340 m/s
- Distance (cm) = Time (μ s) * 340 (m/s) / 2 = Time (μ s) * 0.034 (cm/ μ s) / 2 = Time / 58.82


```
## forever
    digital write pin P0 🕶 to 🕻 0
  🚆 wait (μs) 🔰 🗵
                                                 10 μs of "1" to trigger an
     digital write pin P0 v to 1
                                                 ultrasonic pulse
  🚆 wait (μs) 🚺 10
  🔞 digital write pin P0 🕶 to 🚺 🕖
  set distance v to ( pulse in (μs) pin P1 v pulsed high v
  show number distance
  Ⅲ pause (ms) № 1000
```


http://lh3.ggpht.com/-ydtR-QvsUv0/UFYSOlOyiWI/AAAAAAAAla8/-89ALUvyc9Y/51tbSvuOcAL._SL500_SS500__thumb%25255B7%25255D.jpg

Mini-Project

- Connect 2 LEDs to your micro:bit
- Use another micro:bit to control which LED to turn on
 - a) by pressing A or B Button
 - b) by using accelerometer

Tips

By using Rotation in Accelerometer

Other Examples

3-bit Binary Converter

Other Examples

Toss a Ball

References

- http://tech.microbit.org
- https://makecode.microbit.org/courses/csintro
- https://makecode.microbit.org/22449-66025-47572-42128
- http://howtomechatronics.com

Training Score Redeem Code

Guide

THE RESERVE THE PARTY OF THE PA